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Abstract 

A general theory of X-ray intensity statistics for twins 
by merohedry is developed based on mathematical 
analogy of this problem to a one-dimensional random 
walk. Probability distribution functions are derived (a) 
for intensities from a single twinned specimen, and (b) 
for the differences in intensities from two separate 
twinned specimens. Theoretical values of a dis- 
crepancy index between observed intensities from a 
twin, and calculated intensities from both correct and 
incorrect structural models are evaluated. A new 
method for determining volume fractions of crystals in 
a twin is also proposed, based on the distribution of 
differences in intensities between twin-related reflec- 
tions. These results have implications for the treatment 
of isomorphous replacement data collected from twins 
by hemihedry. 

Twinning by merohedry is often difficult to detect in 
practice since the reciprocal lattices of crystals in a twin 
superimpose exactly. As a result, there is no obvious 
indication in the diffraction pattern of the composite 
nature of the reciprocal lattice. Unsuccessful attempts 
at a structure determination, or unsatisfactory refine- 
ment of a trial structure, may be the first sign that the 
'crystals' used for data collection were actually 
twinned. If twinning is suspected, it is first necessary to 
determine the twin law (how many crystals are present 
in the twin, and by which twin-symmetry operation 
they are related), and whether one has twinning by true 
merohedry (twin-lattice symmetry) or by pseudo- 
merohedry (twin-lattice quasi-symmetry) (Donnay & 
Donnay, 1974). Next, one must determine the volume 
fractions of the crystals in the twin. This may be 
accomplished using methods based on comparison of 
intensities of twin-related reflections (Britton, 1972; 
Murray-Rust, 1973; Fisher & Sweet, 1980) or from the 
distribution of diffracted intensities (Rees, 1980). With 
this information, it is possible to correct the observed 
intensities for twinning. The accuracy of this correction 
is sensitive to both the magnitudes of the volume 
fractions, and to uncertainties in the measurements of 
the intensities and volume fractions (Grainger, 1969). If 
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the degree of twinning is small, it may be possible to 
correct the data for twinning, and then proceed as in a 
normal structure determination. When the degree of 
twinning is sufficiently large, however, it is no longer 
advisable to correct the intensities for twinning. If 
less twinned specimens of a sample are not available, 
one is then faced with the prospect of solving a 
structure with twin data. 

In order to take full advantage of intensity data from 
a twin, it is necessary to understand how twinning 
influences the statistical properties and distribution of 
intensities. This is particularly relevant when direct 
methods are employed, since the selection of reflections 
for the phase relationships depends upon the magni- 
tude of the structure factors, which may be greatly 
perturbed by twinning. The probability distribution 
functions for intensities from twins by hemihedry have 
been derived as a function of the volume fraction 
(Rees, 1980), assuming Wilson's (1949) intensity 
distribution functions for intensities from untwinned 
crystals. In this communication, a general theory of 
X-ray intensity statistics for twins by merohedry is 
presented. Of practical significance, a new method for 
estimating volume fractions of crystals in a twin is 
described, and theoretical values for a discrepancy 
index between observed intensities from a twin, and 
calculated intensities from correct and incorrect models 
for the structure are evaluated. Mathematical details of 
the theory are developed in the Appendix. In the text, 
application of these methods to the estimation of 
volume fractions and the treatment of isomorphous 
replacement data is discussed in some detail for the 
case of twinning by hemihedry. 

The intensity, p, of a reflection measured from a twin 
by hemihedry is a linear combination of the crystal 
intensities, Jl and J2, of tWO reflections related by the 
twin law: 

p = (1 -- a) j l  + aj2, (la) 

where a is the volume fraction (twin fraction) of the 
smaller crystal in the twin. If the intensity of the same 
reflection is measured from a second specimen of twin 
fraction p, the observed value of the intensity, q, is 
given by 

q = (1 -- fl)Jl + flJ2. (lb) 
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Since twinning by merohedry superimposes symmetry- 
equivalent reflections for certain zones, we will restrict 
the following discussion to the general case that j~ and 
J2 are independent. 

A discrepancy index between intensities p and q may 
be defined: 

( I p - - q l )  
R ~  -- (P )  (2) 

From equation (1) and the equality (j~) = (J2), 
equation (2) reduces to: 

( I j 2 - - j z l )  
Ra~ -- (Jm) I f l - -  al 

(3) 
= 

where (R)  is the average value of the discrepancy 
index ( [ J2 - J l l ) / ( , J l )  for random crystal intensities. 
Assuming Wilson's (1949) statistics to be valid for the 
intensities from untwinned crystals, (R)  -- 1.0 for 
non-centrosymmetric reflections, and 4/re for centro- 
symmetric reflections (Srinivasan & Parthasarathy, 
1976). This result is also derived using a more general 
technique in the Appendix. In a similar fashion, the 
mean-square differencebetween the normalized inten- 
sities p and q reduces to 

r 2 ~ = (p _ q)2 
(4) 

= (a--  fl)2 (r2), 

where (r2) equals 2 or 4 for non-centrosymmetric and 
centrosymmetric reflections, respectively (Srinivasan & 
Parthasarathy, 1976). 

The correlation of intensities of twin-related reflec- 
tions from the same specimen is formally equivalent to 
the correlation of intensities from different specimens of 
twinning fractions a and fl = 1 - a. In this case, 

R,~= (1 - 2a) (R)  
(5) 

rZ~= (1 -- 2a) 2 (rE). 

With perfectly measured data, the twinning fraction 
2 As an example, may be determined from R~ or r,~. 

Murray-Rust (1973) found for data collected from a 
twinned centrosymmetric specimen of [Co(NH3)614- 
Cu5C1~7 that R,, = 0.36. With (R)  = 4/u, (5) predicts 
a = 0.36, in reasonable agreement with the value a = 
0.32 which Murray-Rust found by minimizing the 
difference between observed structure factors corrected 
for twinning and calculated structure factors. 

The presence of random errors in the intensity 
measurements contributes an additional term to the 
experimental values of R~ and r E which will decrease Q,, 

the apparent twinning fraction of crystals calculated 
with (5). However, the effect of these errors may be 
compensated for as follows. If A: is the mean-square 
difference between intensities from twin-related refiec- 

tions, and t~ 2 is the average variance in the intensity 
measurements, then 

"42---- 262 + r 2 (6) 
o¢ 

so that the twinning fraction may be estimated by 
rearranging equations (5) and (6) to give 

a = -  1-- (7) 
2 ~ ] J '  

where all quantities on the right-hand side can be 
determined experimentally. 

If a structure determination by the method of 
isomorphous replacement is attempted using crystals 
twinned by merohedry, the intensity changes between 
the native and derivative data sets will include a 
contribution from the difference in twinning fractions of 
the two data sets. In an extreme case, an unsubstituted 
native crystal may appear to be a potential derivative 

V 

(a) 

0 
0 o  

(b) 

° ; /  
Fig. 1. w = 1/3 Harker section of the (AF) 2 difference Patterson 

map of the K2Pt(NO2) 4 derivative of the protein complex 
described in the text. The space group of this complex is P32. (a) 
Difference coefficients calculated from uncorrected data sets 
(with twinning fractions of 0.10 and 0.42 for the native and 
K2Pt(NO2) 4 derivative data sets, respectively). (b) Difference 
coefficients calculated using perfectly twinned native data and the 
uncorrected KzPt(NO2) 4 data set. Contours are at equal and 
arbitrary levels, with the first level above zero omitted. Further 
analysis of the derivative failed to identify any heavy-atom sites 
consistent with the extra peaks in Fig. l(a) (Rees & Lipscomb, 
1980). 
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based entirely on intensity changes due to twinning. It 
is possible, however, to determine the root-mean-square 
contributions of both the substituent and twinning to 
the intensity changes. Making the assumptions that the 
intensity changes due to the substituent are small, and 
that all sources of variance are statistically indepen- 
dent, then the mean-square intensity difference between 
native and derivative data sets, e 2, will consist of several 
components: 

e2 52at + ~]er + r2~ + z2 = ~so, (8) 

where t~n2at and 5]er are the variances of the intensity 
measurements for the native and derivative data sets, 
respectively, and Z~s o is the mean-square intensity 
change due to the substituent. As every term except z~s o 
in (8) may be experimentally measured, the true 
contribution of the substituent to the intensity change 
can be simply determined by solving (8) for Z2so . 

A serious problem may arise in the calculation of 
difference Fourier and Patterson maps when there are 
differences in the twinning fractions of the two data sets 
used in the calculation. Under these circumstances, (8) 
indicates that it is possible to minimize errors in the 
difference coefficients by using data sets which have 
similar twinning fractions. For example, the native and 
K2Pt(NO2) 4 derivative data sets of the protein complex 
between carboxypeptidase-A and the potato carboxy- 
peptidase inhibitor have twinning fractions of 0.10 and 
0.42, respectively (Rees & Lipscomb, 1980). Since 
errors associated with twin correcting the K2Pt(NO2) 4 
data set would be quite large (Grainger, 1969), it is not 
feasible to calculate a difference Patterson map with 
structure factors corrected for twinning. The difference 
Patterson map was considerably improved, however, 
by perfectly twinning the native data set used in the 
difference coefficient calculation (see Fig. 1). This 
procedure increased the ratio of the maximum peak 
height to root-mean-square value of the Harker-section 
in the Patterson map from 3.6 to 5.4. Paradoxically, 
even though this method actually increases the dif- 
ference between intensities and their true, untwinned 
values, it produces difference coefficients which are 
closer approximations to the correct terms. 

The interest of Drs R. LeSar, M. Lewis, J. Hogle, 
and Professors W. N. Lipscomb and J. D. H. Donnay is 
gratefully acknowledged. This work was supported by 
NIH grant GM 06920. 

APPENDIX 
Probability distribution functions for X-ray intensities 

from a twin by merohedry 

In this Appendix, we derive the probability distri- 
butions for X-ray intensities from a twin by merohedry. 
The first section treats the case of diffracted intensities 

from a single twinned specimen, while the second 
section examines differences in observed intensities 
from two separate twinned specimens. From these 
results, a new method of determining the volume 
fractions of crystals in a twin is proposed. Theoretical 
values for a discrepancy index between observed 
intensities from a twin, and calculated intensities from 
both correct and incorrect models are also evaluated. 

It is assumed throughout the discussion that Wil- 
son's (1949) statistics provide an adequate description 
of the probability distribution for intensities from 
untwinned specimens. No assumptions are made con- 
cerning the number of crystals, N, in a twinned 
specimen: twinning by merohedry properly includes 
twinning by hemihedry (N = 2), tetartohedry (N = 4), 
and ogdohedry ( N =  8) (Catti & Ferraris, 1976). A 
range of values for N are permissible for twinning by 
pseudo-merohedry, depending on the crystal sym- 
metry and fortuitous relationships between the cell 
constants. Implicit in the following discussion is the 
assumption that reflections from the individual twin 
domains are independent. This restriction eliminates the 
case in which reflections related by the twinning 
operation are symmetry related. Normalized intensities 
are used throughout the Appendix. 

I. Probability distribution functions for X-ray 
intensities from a single twinned specimen 

The general expression for an observed intensity, p, 
from a twinned specimen with N independent twin 
domains is 

N 

p = ~ a k A  
k = l  

(A1)  
N 

~ Uk, 
k = l  

where a k and Jk are the volume fraction and diffracted 
intensity, respectively, from the kth twin domain. The 
probability distribution of p may be derived by noting 
the similarity of this problem to a random-walk 
problem. In essence, we want to find the probability 
distribution for the length of an N-step one-dimen- 
sional random walk, given the probability distribution 
of the kth step. The general solution to a random-walk 
problem has been discussed by many authors (see, for 
example, Chandrasekhar, 1943), and may be broken 
into two parts" 

(i) Calculation of ~'k, the characteristic function for 
the kth step, from the Fourier transform of the 
probability distribution function for the kth step, P(Uk): 

O3 

,;I.k(~0) = f exp(iq~uk) P(uk) du~, (A2) 
--OO 

where i 2 = - 1. 
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(ii) The probability distribution function of p, PN(P), 
is then given by the inverse Fourier transform of the 
repeated product of all N characteristic functions: 

PN(p)=~--~ f exp(--i~0p) 2k(~0) do. (A3) 
--oO k = l  

The relevant probability distribution and charac- 
teristic functions are given in Tables 1 and 2 for the 
non-centrosymmetric and centrosymmetric cases, 
respectively. The expressions for the P(Jk) are given by 
Wilson's (1949) statistics, and the P(uk) are calculated 
from P(Jk) by a change of variable from JR to U k 
(Srinivasan & Parthasarathy, 1976, p. 204). The 
probability distribution functions PN(P) were evaluated 
as follows: 

(a) for non-centrosymmetric reflections, the inte- 
grand of (A 3) has poles at ~0 = - i / a  k, so that the integral 
may be evaluated using Cauchy's integral theorem and 
Jordan's lemma (Whittaker & Watson, 1927). Ex- 
pressions for PN(P) were explicitly evaluated for the 
two limiting cases: 
(i) all the a k are different (Table 1, entry 4); 
(ii) all the a k are equal to 1/N (the case of perfect 
twinning; Table 1, entry 5). 

(b) In the general case for centrosymmetric reflec- 
tions, the integrand (A3) has branch points at 09 = 
- i /2a  k, which greatly complicate evaluation of the 
integral. Consequently, Pu(P) was evaluated for only 
two cases, using expressions tabulated by Erdelyi 
(1954): 
(i) m twin domains have volume fraction a, while the 
remaining ( N -  m) twin domains have volume fraction 
/3 = (1 - mo)/(N -- m) (Table 2, entry 4); 
(ii) all the a k are equal to 1/N (the case of perfect 
twinning; Table 2, entry 5). 

The expressions for PN(P) in the case of perfect 
twinning (a k = 1/N) for both the centrosymmetric and 
non-centrosymmetric cases were first derived by 
Stanley (1972). Stanley's approach was only suitable 
for the special case of perfect twinning, however. 

Although expressions for Pu(P) have been explicitly 
evaluated for only a few specific examples, it should be 
stressed that for other situations PN(P) may be 
calculated by substitution of the appropriate values of 
2k(~0) into (A3). While it may be necessary to evaluate 
numerically the Fourier transform in (A3) for certain 
centrosymmetric problems, it should be possible to 
obtain analytical solutions for all non-centrosymmetric 
cases. 

Table 1. Probability distribution and characterist& 
functions used in deriving the distribution of  non- 
eentrosymmetrie X-ray intensities from a twin by 

' merohedry 

Functions and parameters are defined in the text. 

1. PUg) exp (--Jk) 

2. P(uk) [ e x p -  (uJa, ) l /a ,  

3. 2k(~o) [(i/a,) + (O]-~(i/ak) 

4. PN(P) {[exp -- (P/ak)l/a k } 
k=l [m=Z ~ k - - a m  

rn ~k 
NN p N- I  

5. PN(P) - -  exp (--N p) 
( N - -  I)! 

II. Distribution of differences in intensities from two 
twinned specimens 

The random-walk approach used to determine the 
probability distributions for intensities from a single 
twinned specimen may also be used to calculate the 
distribution of differences in intensities from two 
twinned specimens. This aspect of the theory will be 
illustrated through two specific examples: (i) the 
dependence of the distribution of intensity differences 
on the twinning fractions of two specimens, each one 
a twin by hemihedry; (ii) the ev-aluation of a dis- 
crepancy index for the comparison of observed 
intensities from perfect twins with calculated intensities 
from both correct and incorrect model structures. 

Table 2. Probability distribution and characterist& 
functions used in deriving the distribution of  eentro- 
symmetric X-ray intensities from a twin by merohedry 

/-(x) and iFl(p;q;r) are the gamma function and the confluent 
hypergeometric function (Erdelyi, 1954) respectively. All other 

functions and parameters are defined in the text. 

[exp - (jJZ)]/(Znjk) v2 

[exp - (uJ2ak)]/(2~lkak) 1/2 

1. P(,.]k) 

2. P(Uk) 

3. 2k(~o) 

4. PN(P) 

[~o + (i/2ak)l-VZ(i/2ak) v2 

[(2a)-rn/2(2fl) -tN-m)/2] exp [--(p/2a)] p(n-2)n[F(N/2)l -z 

× , F I { ( N -  m)/2; N/Z; [ ( f l -a) /Zaf l]p}  

5. PN(P) (N/Z)U/2[F(N/2) ]-l exp -- (Np/2) p(U-2)/2 

II.i. Twinning fraetion determination 

Consider the observed intensities, p and q, from two 
specimens twinned by hemihedry, with twinning frac- 
tions a and fl, respectively. From equations (la) and 
(lb) in the main text, the difference in intensities, 
p -- q, is 

Y=-(P--q)  (A4) 

= (/3 - a )  ( ] 1 - A ) .  

Comparing expressions (A 1) and (A4), we see that a 1 
and a 2 in (A1) correspond to ( / 3 - a )  and ( a - /3 ) ,  
respectively, in (A4). Using the methods described in 
§ I of the Appendix, the probability distribution 
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function Ps(lyl) for the intensity differences [where 
es(lY I) = P2(Y > 0) + P20' < 0)1 may be determined. 
For non-centrosymmetric reflections 

Ps(lyl) = [ e x p - ( l y l / l f l - a l ) ] / l f l - a l ,  (A5) 

while for centrosymmetric reflections 

Ps(lyl)= [Ko(lyl /21f l -al) l / (2rcl f l -al) ,  (A6) 

where K 0 is a modified Bessel function of the second 
kind, of order zero. 

If p and q are the intensities of twin-related 
reflections from the same specimen, then fl = 1 - a,  

I ¢Z= 0.5 

0 . 4 5  

0 . 4  
0 . 8  

0-2 0.1 

0 6  O - 0  

s(A) 

0 . 4  

0 2 

0 2  0 4  O 6 0 8  10  

& 

Fig. 2. "['he cumulative distribution function S(A) for non-centro- 
symmetric reflections from specimens twinned by hemihedry, for 
various values of the twinning fraction a. 

I ~=0.5 ,, 

0"4 

o 8~-- / o 4 j  j .  

s(A) 

0 4  

0 2  

I I 

0 2 0 4 0,6 0.8 1.0 

A 

Fig. 3. The cumulative distribution function S(A) for centro- 
symmetric reflections from specimens twinned by hemihedry, for 
various values of the twinning fraction a. 

and the terms (fl - a)  in (A 5) and (A 6) may be replaced 
by (1 - 2a). The sensitivity of Ps(lyl) to a may be 
demonstrated by considering a function related to 
Ps(lYl), the cumulative function S(A): 

zl 

S(A)=  J Ps(lyl)dy. (A7) 
0 

For non-centrosymmetric reflections, S(A) may be 
evaluated analytically: 

S ( A ) =  1 - exp- [A/ (1  - 2a)l, (A8) 

while for centrosymmetric reflections the integral was 
evaluated using Gauss-Legendre quadratures (Stroud 
& Secrest, 1966). The dependence of S(A) on a is 
shown in Figs. 2 and 3 for non-centrosymmetric and 
centrosymmetric reflections, respectively. Even though 
these curves neglect errors in the intensity measure- 
ments, the sensitivity of S(A) to a indicates that the 
value of a may be estimated from S(A) versus A plots. 

II.ii. Effect of  twinning on discrepancy indices 

If a structure determination using intensity data from 
a twin is attempted, it is important to have theoretical 
values for a discrepancy index between observed and 
calculated intensities for both correct and incorrect 
structure models. This is especially true when the 
specimens used for data collection are highly twinned, 
so there is no prospect of correcting the observed 
intensities for twinning. 

A discrepancy index, R, between the observed 
intensities, I o, and intensities calculated from a struc- 
tural model, I e, may be defined 

()Io -- Iel ) 
R =  

(Io) 
(A9) 

- (16r), 

where the second relationship is valid since the 
intensities are normalized. With equation (A 1), Io, I e 
and 5 may be expressed as 

At 

to = Z a kJk 
k = l  

M 

b = Z / ~ ,  t~ (A 10) 
k = l  

= 
N M 

Y a , j , -  Z p,t,. 
k = l  k = l  

The probability distribution of 161, Ps(161), may be 
evaluated using analogous methods to those described 
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in previous sections. R is then calculated f rom Ps(131) 
by the integral 

oo 

R =  f 3Ps(161) d& ( A l l )  
0 

Theoretical  values of  R have been evaluated for three 
cases. In every case, I o is assumed to be measured  from 
a perfectly twinned specimen, while the I c are defined as 
follows. 

Case (i). The Ic are f rom a correct,  untwinned 
model, so that  M = 1, ill = 1, and t I = J l .  

Case (ii). The I c are f rom an incorrect,  untwinned 
model, so that  M =  1, ill = 1, but the value of  t I is 
independent of  any Jk. 

Case (iii). The I~ are f rom an incorrect,  but perfectly 
twinned, model,  so that  M = N ,  ilk= 1/N, and the 
values for the t k are independent of  anyjk .  

Integrals required for evaluating es(151) and R were 
calculated using Cauchy ' s  integral theorem and Jor- 
dan 's  l emma for the non-cent rosymmetr ic  case; and 
were t aken  f rom Erdelyi (1954) for the centrosym- 
metric case. 

Tables 3 and 4 list expressions for R as a function of  
N for the non-cent rosymmetr ic  and cent rosymmetr ic  
cases, respectively. Values of  R as a function of  N for 

Table 3. Theoretical values for  the discrepancy index 
R defined by equation (A9) between observed and 

calculated non-centrosymmetric intensities 

The details of the three cases are described in the text. N and F(x) 
are the number of crystals in the twin, and the gamma function 
(Erdelyi, 1954), respectively. 

Case R 

(i) 2 [ (N-  I)/NI N 

(ii) 2[N/(N + l)l 'v 

2F[(ZN + 1)/21 
(~) 

NV~ F(N) 

Table 4. Theoretical values for  the discrepancy index 
R defined by equation (A9) between observed and 

calculated centrosymmetric intensities 

The details of the three cases are described in the text. N, F(x), 
and 2Fl(p,q;r;s) are the number of crystals in the twin, the gamma 
function and the Gauss hypergeometric function (Erdelyi, 1954), 
respectively. 

Case R 

16(N-  1) ~N-3>/2 £[(N + 2)/2] 
(i) 3v/~Nm2F[(N - 1)/2] 2F,[2, (3 -- N)/2; 5/2; 1/(1 - N)] 

16NtN-4)/ZF[(N + 3)/2] 
(ii) 3X/% (N + 1)~N-'>/ZF(N/2) ~',[2, (2 -- N)/2; 5/2; -1/N] 

4/"[(N + 1)/21 
(iii) NV/~.F(N/2 ) 

the three cases are illustrated in Figs. 4 and 5 for the 
non-cent rosymmetr ic  and cent rosymmetr ic  cases, 
respectively. Asympto t ic  forms of  the various R factors  
are seen to approach  the expected values: since as N 
tends to infinity, the values of  all I o will approach  1, the 
asymptot ic  value for R in cases (i) and (ii) should 
approach  (1I c - 1 I), which equals 0 .736  and 0 .968  for 
the non-centrosymmetr ic  and cent rosymmetr ic  cases, 
respectively. In case (iii), I c will also approach  1 as N 
approaches  infinity, so that  the value of  R will tend to 
0. 

1 0 

0 8 

R 

0 6 

O 4 

\ 

/ 
0 . 2  

1 2  

I I I I 

2 4 6 8 I 0  

N 

Fig. 4. Dependence of  the discrepancy index R, defined in equation 
(A9), for non-centrosymmetric reflections, on the number of 
crystals in the twin, N, for cases (i) (O), (ii) (O), and (iii) (I--1). 
The details of the three cases are described in the text. 

t . 2  

1 . 0  

0 . 8  

R 

0 . 6  

0..,4 

0 . 2  

I I l [ 
2 4 6 8 10 

N 

Fig. 5. Dependence of the discrepancy index R, defined in equation 
(A9), for centrosymmetric reflections, on the number of crystals 
in the twin, N, for cases (i) (O), (ii) (O), and (iii) (V1). The details 
of the three cases are described in the text. 
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By replacing Ps(I ill) in (A 11) with Ps(lyl) from (A5) 
and (A6), one may verify the expressions for R ~  
derived in equation (3) of the main text for the case of 
twinning by hemihedry. 

An especially striking feature of these results is the 
deleterious effect of perfect twinning on the R factor for 
a correct structure model even at low values of N: for 
N = 2, the theoretical minimum values for R are 0.50 
and 0.63 for non-centrosymmetric and centrosymmetric 
data, respectively. 
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Abstract 

Limiting conditions for the crystal structure analysis of 
organics using electron diffraction intensity data from 
elastically bent microcrystals are shown for a 
representative aromatic structure, cytosine, CaH5N30. 
In a projection down the longest unit-cell axis, the 
normalized structure-factor magnitudes are greatly 
changed by slight bends, making the diffraction data 
useless for crystal structure analysis. This alteration of 
intensity is less severe for a projection down the 
shortest cell axis and allows a correct structure analysis 
for bends comparable to those measured experi- 
mentally. The correct crystal orientation, moreover, is 
only achieved by epitaxial growth and not solution 
growth. 

Introduction 

As effects due to crystal bending are routinely observed 
in experimental electron microscopy, their con- 
sequence for the crystal structure analysis from 
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electron diffraction data should be considered. Direct 
phase determination has been successfully applied to 
electron diffraction intensity data from an ortho- 
rhombic paraffin and a cephalin (Dorset & Hauptman, 
1976) to elucidate the aliphatic chain packing. The 
effect of n-beam dynamical scattering on the success of 
this phasing procedure has been recently reported 
(Dorset, Jap, Ho & Glaeser, 1979). Two organic 
structures, anhydrous cytosine and disodium 4-oxo- 
pyrimidine-2-sulphinate hexahydrate, were used to 
investigate the dependence of correct phasing on 
crystal thickness and electron beam energy. Dynamical 
structure factors from crystals up to about 75 A thick, 
at 100 kV, gave correct kinematical phases and yielded 
correct crystal structures. 

As shown by Cowley (1961), elastic bends also can 
appreciably affect diffraction patterns, altering both 
intensities and the apparent symmetry of the zone. This 
has been demonstrated with experimental data from 
several long-chain paraffinic materials (Dorset, 1979; 
Dorset, 1980). Since solvent-grown crystals of these 
materials have a long unit-cell edge parallel to the 
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